Elastic-Fluid Model for DNA Damage and Mutation from Nuclear Fluid Segregation Due to Cell Migration.
نویسندگان
چکیده
When cells migrate through constricting pores, they incur DNA damage and develop genomic variation. Experiments show that this damage is not due to DNA breakage from mechanical stress on chromatin in the deformed nucleus. Here we propose a model for a mechanism by which nuclear deformation can lead to DNA damage. We treat the nucleus as an elastic-fluid system with an elastic component (chromatin) and fluid component that can be squeezed out when the nucleus is deformed. We couple the elastic-fluid model to the kinetics of DNA breakage and repair by assuming that the local volume fraction of the elastic component controls the rate of damage per unit volume due to naturally occurring DNA breaks, whereas the volume fraction of the fluid component controls the rate of repair of DNA breaks per unit volume by repair factors, which are soluble in the fluid. By comparing our results to a number of experiments on controlled migration through pores, we show that squeeze-out of the fluid, and hence of the mobile repair factors, is sufficient to account for the extent of DNA damage and genomic variation observed experimentally. We also use our model for migration through a cylindrical pore to estimate the variation with tissue stiffness of the mutation rate in tumors.
منابع مشابه
A finite elements study on the role of primary cilia in sensing mechanical stimuli to cells by calculating their response to the fluid flow
The primary cilium which is an organelle in nearly every cell in the vertebrate body extends out of the cell surface like an antenna and is known as cell sensor of mechanical and chemical stimuli. In previous numerical simulations, researchers modeled this organelle as a cantilevered beam attached to the cell surface. In the present study, however, we present a novel model that accommodates for...
متن کاملNonlocal Vibration of Y-SWCNT Conveying Fluid Considering a General Nonlocal Elastic Medium
In this paper, a nonlocal foundation model is proposed to analyze the vibration and instability of a Y-shaped single-walled carbon nanotube (Y-SWCNT) conveying fluid. In order to achieve more accurate results, fourth order beam theory is utilized to obtain strain-displacement relations. For the first time, a nonlocal model is presented based on nonlocal elasticity and the effects of nonlocal fo...
متن کاملElastic Wave Propagation at Imperfect Boundary of Micropolar Elastic Solid and Fluid Saturated Porous Solid Half-Space
This paper deals with the reflection and transmission of elastic waves from imperfect interface separating a micropolar elastic solid half-space and a fluid saturated porous solid half-space. Longitudinal and transverse waves impinge obliquely at the interface. Amplitude ratios of various reflected and transmitted waves are obtained and computed numerically for a specific model and results obta...
متن کاملSegregation patterns of an equidensity TiO2 ternary mixture in a conical fluidized bed: CFD and experimental study
In this study, an Eulerian-Eulerian multi-fluid model (MFM) was used to simulate the segregation pattern of a conical fluidized bed containing ternary mixtures of equidensity TiO2 particles. Experimental 'freeze–sieving' method was employed to determine the axial mass fraction profiles of the different-sized particles, and validate the simulation results. The profiles of mass fraction for larg...
متن کاملA Classic Case of Maple Syrup Urine Disease and a Novel Mutation in the BCKDHA Gene
Background: Maple syrup urine disease (MSUD) is an inherited branched-chain amino acid metabolic disorder caused by the deficiency in the branched-chain alpha-keto acid dehydrogenase (BCKD) complex. In MSUD, elevation of the branched-chain amino acids, such as alpha-keto acid and alpha-hydroxy acid, occurs due to the BCKDC gene deficiency, appearing in the blood, urine, and cerebrospinal fluid,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 112 11 شماره
صفحات -
تاریخ انتشار 2017